While the seas were still churning from the impact and the seawater temperatures were high due to the hydrothermal activity, life was reestablishing itself inside the crater.
Katherine Freeman, Evan Pugh University Professor of Geosciences at Penn State, has been awarded the 2020 Nemmers Prize in Earth Sciences. The prize is awarded by Northwestern University and recognizes achievement and work of lasting significance in the field of Earth sciences.
Freeman was selected “for her pioneering and continued contributions to development of the field of compound-specific stable isotope geochemistry and its application to fundamental problems in Earth science."
Pyrite, or fool’s gold, is a common mineral that reacts quickly with oxygen when exposed to water or air, such as during mining operations, and can lead to acid mine drainage. Little is known, however, about the oxidation of pyrite in unmined rock deep underground.
A new, multi-scale approach to studying pyrite oxidation deep underground suggests that fracturing and erosion at the surface set the pace of oxidation, which, when it occurs slowly, avoids runaway acidity and instead leaves behind iron oxide “fossils.”
When the Paleocene ended and the Eocene began nearly 56 million years ago, Earth’s atmospheric carbon dioxide levels ranged between 1,400 and 4,000 parts per million (ppm). These carbon dioxide levels gave rise to sauna-like conditions across the planet, which scientists can now measure using tiny minerals called siderites.
With rising temperatures in the Arctic, communities in Alaska’s North Slope Borough are seeing the ground beneath their feet melt away.
“Climate change is thawing the frozen soil,” said Ming Xiao, associate professor of civil and environmental engineering at Penn State. “The borough spends $100 million a year just for repairs to roads, buildings and pipelines. To build resilient infrastructure in the changing Arctic, we need to understand how the soil behaves as it softens.”
Rocks from the Rio Grande continental rift have provided a rare snapshot of active geology deep inside Earth’s crust, revealing new evidence for how continents remain stable over billions of years, according to a team of scientists.
“We tend to study rocks that are millions to billions of years old, but in this case we can show what’s happening in the deep crust, nearly 19 miles below the surface of the Earth, in what geologically speaking is the modern day,” said Jacob Cipar, a graduate student in geosciences at Penn State. “And we have linked what’s preserved in these rocks with tectonic processes happening today that may represent an important step in the development of stable continents.”
The quest to understand our place in the universe is one of the most enduring scientific pursuits. A new interdisciplinary planetary science initiative will focus efforts at Penn State on exploring and seeking out life in the solar system and far into the cosmos.
The Consortium for Planetary and Exoplanetary Sciences and Technology aims to provide a new approach to studying how planets form, evolve and become habitable, and detecting and potentially exploring these worlds. It brings together researchers from across departments, colleges and Penn State campuses.
RADAR satellites can collect massive amounts of remote sensing data that can detect ground movements — surface defomations — at volcanoes in near real time. These ground movements could signal impending volcanic activity and unrest; however, clouds and other atmospheric and instrumental disturbances can introduce significant errors in those ground movement measurements.
Now, Penn State researchers have used artificial intelligence (AI) to clear up that noise, drastically facilitating and improving near real-time observation of volcanic movements and the detection of volcanic activity and unrest.
Climate change could put a major fishery — and the millions of people who depend on it — at risk in one of the world’s most vulnerable regions, according to researchers.
“Fisheries are important to food security throughout the world,” said Sarah Ivory, assistant professor of geosciences at Penn State. “Developing nations, like those surrounding Lake Tanganyika in eastern Africa, depend on fish as an important protein source. It’s also an important part of their cultural identity.”
By Katherine Kornei
Never underestimate pond scum. The asteroid impact that killed most of the dinosaurs 66 million years ago also created conditions for ocean microbes to flourish, according to a new study. In microscopic rock crystals, researchers have found evidence that massive blooms of algae and photosynthetic bacteria covered the world’s oceans, providing food for larger marine creatures soon after the cataclysm.